
1
Fourth Workshop on the DOE Advanced Computational Software Collection

Berkeley, CA, August 5-8, 2003

OPT++

An Object-Oriented Toolkit for
Nonlinear Optimization

Juan Meza

High Performance Computing Research
Lawrence Berkeley National Laboratory

http://crd.lbl.gov/~meza

2Fourth Workshop on the DOE Advanced Computational Software Collection
Berkeley, CA, August 5-8, 2003

Outline

� Introduction to Optimization
� OPT++ Philosophy
� OPT++ Problem and Solver Classes
� Quick Tour of Algorithms
� Parallel optimization techniques
� Setting up a Problem and Algorithm

� Example 1: Unconstrained Optimization
� Example 2: Constrained Optimization
� Example 3: Protein Folding

� Summary

3Fourth Workshop on the DOE Advanced Computational Software Collection
Berkeley, CA, August 5-8, 2003

Introduction

� OPT++ is an open source toolkit for general
nonlinear optimization problems

� Original development started in 1992 at Sandia
National Labs/CA

� Major contributors
� Juan Meza, LBNL
� Ricardo Oliva, LBNL
� Patty Hough, SNL/CA
� Pam Williams, SNL/CA

4Fourth Workshop on the DOE Advanced Computational Software Collection
Berkeley, CA, August 5-8, 2003

Total = 338
Other (Country not identified) = 120

As of April, 2003

Global OPTimizationGlobal OPTimization

5Fourth Workshop on the DOE Advanced Computational Software Collection
Berkeley, CA, August 5-8, 2003

Simulation-based optimization problems

� Predict properties of
nanostructures or design
nanostructures with desired
properties

� Protein folding problems:
create secondary structures
and obtain predictions of α-
helices and β-sheets.

http://graphics.cs.ucdavis.edu/~okreylos/ResDev/ProtoShop/index.html

6Fourth Workshop on the DOE Advanced Computational Software Collection
Berkeley, CA, August 5-8, 2003

Parameter identification example

� Find model parameters,
satisfying some bounds,
for which the simulation
matches the observed
temperature profiles

� Computing objective
function requires
running thermal
analysis code

� Each simulation
requires approximately
7 hours on 1 processor

7Fourth Workshop on the DOE Advanced Computational Software Collection
Berkeley, CA, August 5-8, 2003

Formulation of parameter ID problem

� Objective function
consists of computing
the temperature
difference between
simulation results and
experimental data

� Optimization
landscape contains
many local minima

� Uncertainty in both
the measurements
and the model
parameters

ux

TxT
N

i
iix

 0 t.s.

))((min
1

2*

≤≤

−∑
=

8Fourth Workshop on the DOE Advanced Computational Software Collection
Berkeley, CA, August 5-8, 2003

General Optimization Problem

0)(
,0)(..

≥
=

xg
xhts

Inequality constraints

Equality constraints

Objective function),(min xf
nx ℜ∈

)()()(xgwxhyxfL TT −+=

9Fourth Workshop on the DOE Advanced Computational Software Collection
Berkeley, CA, August 5-8, 2003

Optimization Problem Types

� Unconstrained optimization
� Bound constrained optimization

� Only upper and lower bounds
� Sometimes called “box” constraints

� General nonlinearly constrained optimization
� Equality and inequality constraints
� Usually nonlinear

� Some special case classes (not currently handled in
OPT++)
� Linear programming (function and constraints linear)
� Quadratic programming (quadratic function, linear

constraints)

10Fourth Workshop on the DOE Advanced Computational Software Collection
Berkeley, CA, August 5-8, 2003

Some working assumptions

�Objective function is smooth
� Usually true, but simulations can create noisy

behavior
�Twice continuously differentiable

� Usually true, but difficult to prove
�Constraints are linearly independent

� Users can sometimes over-specify or incorrectly
guess constraints

�Expensive objective functions

11Fourth Workshop on the DOE Advanced Computational Software Collection
Berkeley, CA, August 5-8, 2003

OPT++ Philosophy

� Problem should be defined in terms the user
understands
� Do I have second derivatives available? and not
� Is my objective function twice continuously differentiable?

� Solution methods should be easily interchangeable
� Once the problem is set up, methods should be easy to

interchange so that the user can compare algorithms

� Common components of algorithms should be
interchangeable
� Algorithm developers should be able to re-use common

components from other algorithms, for example line
searches, step computations, etc.

12Fourth Workshop on the DOE Advanced Computational Software Collection
Berkeley, CA, August 5-8, 2003

Classes of Problems in OPT++

�Four major classes of problems available
� NLF0(ndim, fcn, init_fcn, constraint)

• Basic nonlinear function, no derivative information
available

� NLF1(ndim, fcn, init_fcn, constraint)
• Nonlinear function, first derivative information available

� FDNLF1(ndim, fcn, init_fcn, constraint)
• Nonlinear function, first derivative information

approximated

� NLF2(ndim, fcn, init_fcn, constraint)
• Nonlinear function, first and second derivative

information available

13Fourth Workshop on the DOE Advanced Computational Software Collection
Berkeley, CA, August 5-8, 2003

Classes of Solvers in OPT++

� Direct search
� No derivative information required

� Conjugate Gradient
� Derivative information may be available but doesn’t use

quadratic information

� Newton-type methods
� Algorithm attempts to use/approximate quadratic information
� Newton
� Finite-Difference Newton
� Quasi-Newton
� NIPS

14Fourth Workshop on the DOE Advanced Computational Software Collection
Berkeley, CA, August 5-8, 2003

Constraints

� Constraint types
� BoundConstraint(numconstraints, lower, upper)
� LinearInequality(A, rhs, stdFlag)
� NonLinearInequality(nlprob, rhs, numconstraints, stdFlag)
� LinearEquation(A, rhs)
� NonLinearEquation(nlprob, rhs, numconstraints)

� Everything combined
� CompoundConstraint(constraints)

15
Fourth Workshop on the DOE Advanced Computational Software Collection

Berkeley, CA, August 5-8, 2003

Quick tour of some of the algorithms

16Fourth Workshop on the DOE Advanced Computational Software Collection
Berkeley, CA, August 5-8, 2003

� Can handle noisy
functions

� Do not require
derivative information

� Inherently parallel
� Convergence can be

painfully slow

Pattern search

17Fourth Workshop on the DOE Advanced Computational Software Collection
Berkeley, CA, August 5-8, 2003

Conjugate Gradient Methods

� Two major classes
� Standard nonlinear conjugate gradient

� Two different types of line searches

� Limited Memory BFGS
� Unconstrained version available
� Bound constrained version under development

18Fourth Workshop on the DOE Advanced Computational Software Collection
Berkeley, CA, August 5-8, 2003

Newton-type Methods

� Fast convergence
properties

� Good global
convergence
properties

� Inherently serial
� Difficulties with

noisy functions

xN

xc

xCP

19Fourth Workshop on the DOE Advanced Computational Software Collection
Berkeley, CA, August 5-8, 2003

NIPS: Nonlinear Interior Point Solver

� Interior point method
� Based on Newton’s method for a particular system of

equations (perturbed Karush-Kuhn-Tucker, KKT,
equations, slack variable form)

� Can handle general nonlinear constraints
� Can handle strict feasibility

0
)(

)(

)()()(

)(=























−
−

−
∇−∇+∇

=

eZSe
sxg

xh
zw

wxgyxhxf

F

µ

µ

20
Fourth Workshop on the DOE Advanced Computational Software Collection

Berkeley, CA, August 5-8, 2003

Parallel Optimization

21Fourth Workshop on the DOE Advanced Computational Software Collection
Berkeley, CA, August 5-8, 2003

Schnabel Identified Three Levels for
Introducing Parallelism Into Optimization (1995)

� Parallelize evaluation of function/gradient/constraints
� May or may not be easy to implement

� Parallelize linear algebra
� Really only useful if the optimization problem is large-scale

� Parallelize optimization algorithm at a high level, for
example, multiple function evaluations in parallel
� Parallel Direct Search
� Generalized Pattern Search
� TRPDS

22Fourth Workshop on the DOE Advanced Computational Software Collection
Berkeley, CA, August 5-8, 2003

Trust Region + PDS

xN

xc

xCP

� Fast convergence
properties of Newton
method

� Good global
convergence properties
of trust region approach

� Inherent parallelism of
PDS

� Ability to handle noisy
functions

23Fourth Workshop on the DOE Advanced Computational Software Collection
Berkeley, CA, August 5-8, 2003

Algorithm Choices Depend on Problem

xxxOptLBFGS

x
x

x
x

x
x

FDNLF1

xxOptFDNewton

xOptNIPS
xOptBCNewton
xOptNewton
xxOptFDNIPS

xxOptBCQNewton
xxOptQNewton

xxOptCG
xxxOptPDS

NLF2NLF1NLF0

24Fourth Workshop on the DOE Advanced Computational Software Collection
Berkeley, CA, August 5-8, 2003

Example 1: unconstrained optimization

void init_rosen_x0(int ndim, ColumnVector& x);
void rosen(int ndim, const ColumnVector& x, double& fx, int& result);

int main() {

int ndim = 2;

FDNLF1 nlp(ndim, rosen, init_rosen_x0);

nlp.initFcn();

OptQNewton objfcn(&nlp);

objfcn.setSearchStrategy(TrustRegion);

objfcn.setMaxFeval(200);

objfcn.setFcnTol(1.e-4);

objfcn.optimize();

}

25Fourth Workshop on the DOE Advanced Computational Software Collection
Berkeley, CA, August 5-8, 2003

Example 2: Constrained optimization

0.50.5
,5.45.4
,5.45.4

,48
..

)5()10)(9/1()(min

3

2

1

2
3

2
2

2
1

2
3

2
21

2
21

≤≤−
≤≤−
≤≤−

≤++

−+−++−

x
x
x

xxx
ts

xxxxx

26Fourth Workshop on the DOE Advanced Computational Software Collection
Berkeley, CA, August 5-8, 2003

Constrained optimization: Step 1

������������	�

��
����������������������
����������	�

�����������������������������	����

��������������������������	�

������������ ������ �
��
�����������������������
�����	

!�"����#��$����
��������������% −4.5 ≤ x1 ≤ 4.5,
−4.5 ≤ x2 ≤ 4.5,
−5.0 ≤ x3 ≤ 5.0

27Fourth Workshop on the DOE Advanced Computational Software Collection
Berkeley, CA, August 5-8, 2003

Constrained optimization: Step 2

��������	
 ���
�������
������������������
����������	
������

����� !�����"
�� ���
��������
! #�
�$!"��%����	
���

!�"����#��$���������������&
����'�����������%

x1
2 + x2

2 + x3
2 ≤ 48

��������#����$�����������������������������������(����%

���&�$������� !���������� !���� ��

�
�����&�$������� !�����"
��� '���

28Fourth Workshop on the DOE Advanced Computational Software Collection
Berkeley, CA, August 5-8, 2003

Constrained optimization: Step 3

)*+,������������$�-�������.$�-�./���������������	�

���������+����	

!�"����#�������������0��#��$�������������������%

1��)234������(�5�����	��

�����(�������0���	

!�"����#��$��1�����0��������(��������������0��#���6

29Fourth Workshop on the DOE Advanced Computational Software Collection
Berkeley, CA, August 5-8, 2003

Application: Protein Folding

void init_X0(int ndim, ColumnVector& x);
void eval_energy(int ndim, const ColumnVector& x, double& fx, int&

result);
int main() {

PDB pdb(“t162.pdb”); // loads pdb file

int ndim = 3 * pdb.NumAtoms();

FDNLF1 nlp(ndim, eval_energy, init_X0);

nlp.initFcn();

OptLBFGS optobj(&nlp);

optobj.setMaxFeval(10000);

optobj.setFcnTol(1.e-6);

optobj.optimize();

}

30Fourth Workshop on the DOE Advanced Computational Software Collection
Berkeley, CA, August 5-8, 2003

Energy Minimization Using LBFGS

�Energy Function: AMBER
�Protein 162;
�N = 13728 (4576 Atoms)
�LBFGS with M=15
�Total number of LBFGS

iterations = 11656
�Total number of function

evaluations = 11887
�Each function evaluation

takes approximately 5
CPU sec

Protein T162 (from CASP5)

31Fourth Workshop on the DOE Advanced Computational Software Collection
Berkeley, CA, August 5-8, 2003

Protein T162 (from CASP5)

� Initial configuration
created using
ProteinShop (S.
Crivelli)

� Energy minimization
computed using
OPT++/LBFGS

� Final average RMSD
change was 3.9

� Total simulation took
approximately 32
hours on a 1.7GHz
machine with 512
RAM

32Fourth Workshop on the DOE Advanced Computational Software Collection
Berkeley, CA, August 5-8, 2003

Summary

� OPT++ can handle many types of nonlinear
optimization problems

� The toolkit can be used to compare the effectiveness
of several algorithms on the same problem easily

� The user needs to provide only functions for the
objective function and the constraints
� If additional information is available it can be easily

incorporated

� The code is open source and available at either
� http://www.nersc.gov/~meza/projects/opt++
� http://csmr.ca.sandia.gov/opt++

33
Fourth Workshop on the DOE Advanced Computational Software Collection

Berkeley, CA, August 5-8, 2003

Backup Material

34Fourth Workshop on the DOE Advanced Computational Software Collection
Berkeley, CA, August 5-8, 2003

References

� Other links
� http://sal.kachinatech.com/B/3/index.shtml
� http://www-neos.mcs.anl.gov/neos
� http://www.mcs.anl.gov/tao
� http://endo.sandia.gov/DAKOTA/index.html

� Books/Papers
� Dennis and Schnabel, Numerical Methods for Unconstrained

Optimization and Nonlinear Equations, Prentice-Hall, 1983
� Gill, Murray, Wright, Practical Optimization, Academic Press, 1981
� El-Bakry, Tapia, Tsuchiya, Zhang, On the Formulation and Theory

of the Newton Interior-Point Method for Nonlinear Programming,
JOTA, Vol. 89, No.3, pp.507-541, 1996

� More´ and Wright, Optimization Software Guide, SIAM, 1993

35Fourth Workshop on the DOE Advanced Computational Software Collection
Berkeley, CA, August 5-8, 2003

Comparison of TRPDS with other
approaches

0

1000

2000

3000

4000

5000

6000

1.E-12 1.E-10 1.E-08 1.E-06 1.E-04 1.E-02

PDE Relative Convergence Tolerance

W
al

l C
lo

ck
 T

im
e(

s)

BFGS
SPEC
TRPDS

36Fourth Workshop on the DOE Advanced Computational Software Collection
Berkeley, CA, August 5-8, 2003

Energy vs. LBFGS iterations for T162 Problem

37Fourth Workshop on the DOE Advanced Computational Software Collection
Berkeley, CA, August 5-8, 2003

T162 Protein: ||gradient|| by atom

38Fourth Workshop on the DOE Advanced Computational Software Collection
Berkeley, CA, August 5-8, 2003

4576 atoms

Distribution of ||gradient|| by atom

54 atoms have ||g||2 > 0.5

